Versatility of Folin-Ciocalteu Method Applied on Honey Determination of Total Phenols

ADRIANA MONICA CHIS*, CORNELIA PURCAREA

University of Oradea, Environmental Protection Faculty, Department of Food Engineering, 26 Gen. Magheru Str., 410048, Oradea, Romania

The main benefits of honey regarding human health issue from its minor components mainly because of their antioxidant properties. So far the studies emphasise the phenolic compounds beneficial effect related to the antioxidant activity of honey. The aim of this study was to verify the influence of temperature and reaction time on honey total phenol content (TPC) value determined using Folin-Ciocalteu assay. Twenty samples of floral and honeydew honey were tested for total phenol content in four experimental variants: $A - at 20^{\circ}C$ for 2 h, $B - 20^{\circ}C$ for 1 h, $C - 40^{\circ}C$ for 20 min and $D - 4^{\circ}C$ for 30 min . The comparison of A variant, the most spread one, to the others shows that the reduction of time from 2 h to 1 h leads to non-significant differences while the rise of temperature, even for short laps of time, reveals significant differences between the recorded TPC values.

Keywords: honey, phenols, Folin-Ciocalteu, time, temperature

Honey is an animal origin food, but has very different characteristics among this category of food. So, the protein content is low, under 0.5% [1], but the carbohydrate content is very high, over 60% according to European [2] and Romanian regulations [3]. For this reason honey is used as a healthy natural sweetener no matter its origin - floral or honeydew. But the main benefits of honey regarding human health are due to its minor components as vitamins, phenolic acids, flavonoids and enzymes. So far the studies emphasise the phenolic compounds beneficial effect related to the antioxidant activity of honey [4, 5]. The antioxidative potential of honey from different botanical and geographical origin was reviewed including a large database for Total Phenolic Content (TPC) [6].

The Folin-Ciocalteu spectrophotometric assay[7] is now widely spread for the quantification of TPC in different vegetal origin foods as fruits [8-10],medicinal plants and spices [11, 12], tomatoes[13] or in wine[14, 15]. In our knowledge, the method was first used for honey in 2005 [16]. Since then, most researchers including the Romanian ones [17- 20] used the same experimental conditions for the reaction mixture regarding temperature (20° C) and waiting time (2 h) until the absorbance of the blue phosphomolibdenic complex is registered.

Despite the fact that Folin-Ciocâlteu method is applied on a large scale, the comparison of the reported values for the same matrix, namely honey, is not always easy to approach because of several experimental approaches.

Besides previously named the basic method, other variants regarding temperature and waiting time, were applied for TPC determination in honey. Hence 60 min [21], respectively 90 min [22] as waiting time at 20°C were used in experiments. The time is even shorter referred to 20 min in another study [23]. There are different experiments conducted at such short period of time [24-26], but they cannot be compared to the others because they are performed without using sodium carbonate. Other researchers tried to reduce time and rise temperature in the same time using for example 15 min reaction time at 45°C [27] or 15 min at 50°C [28]. The goal of our study was (i) to verify the influence of temperature and reaction time on honey total phenol content value determined using Folin-Ciocalteu assay and (ii) to verify if the botanical origin of honey has influence in this issue.

Experimental part

Materials and methods

The material consists in twenty honey samples from Bihor County, presented in table 1. The samples code is the same all over the paper content. There are seven floral types (thirteen samples), six honeydew honey types (fir and honeydew) and one mixed honey. The samples were provided in glass jar of 200 - 400g, were kept in the dark at room temperature bellow 25° C until analysed. Crystallized honey was liquefied by gentle warming at 40° C in a thermostatic bath.

Honey sample: a quantity exactly weighted as close as possible to five grams was diluted in a beaker with approximate 25 mL of distillate water and then transferred quantitatively in a 50 mL flask. Honey solutions were filtered prior to use. From each sample four test tubes were prepared as follows. Over five hundred μ L of filtered solution 2.5 mL of Folin-Ciocalteu reagent 0.2N was added and then strongly mixed by vortex. After 5 min, 2 mL of 7.5% sodium carbonate solution was added and again mixed by vortex.

Four experimental variants were tested:

- A Samples were allowed to stay at 20°C for 2 h
- B Samples were allowed to stay at 20°C for 1 h

C - Samples were allowed to stay at 40°C for 20 min

D - Samples were allowed to stay at 40°C for 30 min For C and D variants, the test tubes were quickly cooled

after removing from the thermostatic bath.

Two series of the tested samples were tested, each of them in duplicate.

Galic acid was used as standard from 0 to 250 mg/L. The same procedure regarding time and temperature as for the samples was applied on the test tubes containing the dilutions of the standard (variants A, B, C and D).

The absorbance was read using the same type of plastic cuvette, 1 cm pathway, at 760nm.

Sample	Type of	honey	i	Botanical	rigin		Vear	P.	ovenance	
code	Type of	noney		Botanical 0	rigm		r cat.	P1	ovenance	
Florel										
rioral									- I - I	
KI	Rape			Brassica SP	P	Ľ	2012	Or	adea market	
R2							2013			
FIS1				Helianthus a	annuusL.	1	2014			
FIS2	Sunflower						2014	14		
SM14	Acacia			Robiniapseudacacia			013			
SB14	4 1			1.000.0004200000000			2014	014 Directly f		
IN13	Heather			Calluna vul	garis		2013	3 beekeepers,		
IN14					2	H	2014	14 Bihor Count		
<u> </u>	Fruit Tree (Cherry)			Prususcouius	194	;	2017	2		
- C3	Fine He	e (oneny)		1 / 10/10/00/10/	71		2012	-		
TB14	Lime			Tiliaspp.		2014				
T14	-				z maspp.					
PFM	Poliflora	Polifloral			Mixed (mountain area)					
PFC					Mixed (mountain area)					
Mired				narrea (pian		2012				
IVIIXeu	Hamanda	/Downhower		Under an on /D	whereideeue		0012	D.	ine morleat	
NI/Z	Honeyde	w/Kaspberry		Unknown K	uousiaaeus		2013	Бе	eluş market	
Honeydew	/									
B12	Fir			Abies			2012			
B13		1					2013	Di	rectly from	
M12		1					2012	be	ekeepers,	
M13	7	1						Bi	ihor County	
M14	Honevde	w		Unknown		E	2014		-	
						E	2014	Ar	picola.Oradea	
MAp14									,	
	L A 01 0.00		D (1.000		0.00	1000			01 409C	
variant	A – 2h, 20°	ι.	в – 1h, 20°	U Flored	C- 20	,40°C		D- 3	∪,40°C	
				Floral						
Туре	Mear	n ±SD	Mea	n±SD	Mea	n±SD		Me	an ±SD	
	Minimum	Maximum	Minimum	Maximum	Minimu	Maximum	M	inimum	Maximum	
					m					
R1	39	0.289±0.185	39	379 ±1.825	46	599±2.805			47.126±0.245	
	39.069	39.474	49.182	42,705	49.182	42.705	4	6.851	47.428	
R2	62,758	+ 0 189	62.20*	+0.862	64.760	±1 321	· ·	69.24	3±1.952	
	62.552	62.948	61 280	63 228	63 232	66 071	6	6 662	71 212	
FT \$2	40.434+	0.0.481	41.006	+0.580	40.706	+0.627	<u> </u>	30 77	8+0.007	
1.1.52	40.016	10.0.461	40.604	1 41 678	40.750	41.678	3	8 647	11 071	
FT S1	S1 48.027+1.347		47.638+2.152		51.967±2.326		51.885+1.82		11.071	
resi	40.027	1.347	45.555	50.656	50.007	55 2 / 9		0 114	5/ 2/2	
трія	40.880	49.040	45.555	12 206	30.007	12 050		20.56	011.400	
1614	30.341	±1.848	37.00/:	±2.300	42.303	±3.809	<u> </u>	39.30	8±1.400	
	34.032	38.0/8	30.079	39.089	30.975	45.51/	د	7.809	40.729	
114	34.55/3	±0.346	30.463	±0.422	40.241	±0.973		38.89	4±2.894	
	34.371	35.062	35.214	36.013	39.502	41.660	3	6.754	41.268	
SM14	43.659=	±0.417	44.145±0.668		43.307	±2.449		51.00	2±1.079	
	43.218	44.024	43.189	44.685	40.107	45.997	49.656		52.298	
SB14	53.824	±1.302	56.538	±0.867	57.379	±1.785		57.64	7±1.023	
	52.473	55.595	55.720	57.422	55.441	59.681	1	5.72	59.877	
IN13	134.613	±4.028	143.723	±3.113	144.550	±0.441	T	151.01	4±3.193	
	132.186	140.639	139.118	145.980	144.120	144.939	14	7.717	154.101	
IN14	115.711±1.4	454	117.423±0.	955	124.366±3	664	12	7.524±0.9	914	
	114.402	117.383	116.001	118.016	121.433	128.824	1	26.452	128.647	
Cs	99.249=	±2.297	106.323	±3.104	107.292	±1.884		110.73	8±0.589	
	95.897	101.052	103.235	110.287	105.120	109.720	10	9.939	111.354	
PFC	6	6.817±2.232	6	7.919±2.352	7	0.112±2.593	+		71.750±2.750	
	64.051	69.440	65.361	70.372	67.787	73.422	(58.412	75.241	
PFM	129 090	±0.647	130 312	±1.131	133 36	±2.932	+	133 57	7±1.055	
	128 193	129 631	128 775	131 466	130 151	136 800	13	2,4567	134 973	
	120.175		120.772	Mixed	150.151	100.000	1.5	2.1201		
M/Z	185 754+3	020	186 396±3	097	192,609+2	203	18	6 829± 0	408	
	182 001	180.885	182 410	180 // 18	190.260	105.046	10	86.461	187 / 92	
	102.091	107.003	102.410	Honeydory	190.208	195.040	1	00.401	107.463	
R10	160.10	5+0.792	167.22	1+1 077	171 4	24+0.214		175 2004	-0.418	
512	166 061	160.000	165 175	160 /2/	171.2	274-0.214 171.750		173.209=	175 700	
D12	100.901	211 220	103.173	109.454	1/1.551	1/1./38		174.720	621+0.022	
813	193.14	5±1.220	193.12	:/±1.410	199.8	v8±V.321		200.	031±0.92/	
	191.958	194.847	191.394	194.861	199.405	200.187		199.470	201.678	
M12	136.71	6±1.026	134.41	0±1.225	139.7	51±1.751		144.	468±0.188	
	135.784	138.137	131.979	132.808	138.222	141.859		144.320	144.720	
M13	178.055±2	506	176.945±3	.721	174.925±3	000		181.251±	3.878	
	175.908	181.667	174.147	182.320	171.567	178.803		77.537	183,980	
MIA	1/2 63	441.625		7.005±1.500		15/ 96310 4	00		154 146-1 103	
M14	140.52	/4±1.050	146 212	1.090=1.082	52 020	155.02±0.4	-68	152 220	104.140±1.197	
	144.803	148.380	140.513	147.713	100.958	155.855		135.520	155.920	
MAp14	161.991±1.	189	162.299 ±	0.996	165.936±2	.2/7		1/0.160±	3.065	
	160.727	163.480	161.317	163.677	163.077	168.557	1	67.242	173.856	

Table 1ANALYSED HONEYSAMPLES

Table 2TOTAL PHENOLCONTENT, MG GAE /100G HONEY

Reagents and devices

All used reagents were analytical graded: Folin-Ciocalteu Reagent 2N from MERCK Germany, sodium carbonate from Chimopar Romania, Gallic acid from ROTH Germany. The used devices were vortex -HETTIK Germany, spectrophotometer UVMini-1240 -Shimadzu and thermostatic bath -Julabo.

 Table 3

 STATISTICAL ANALYSIS, VARIANTS COMPARISON

Variant	В		С		D			
Statistical	Nr	%	Nr	% Samples	Nr	% Samples		
significance	samples	Samples	samples	_	samples	_		
ns	16(10F;6H)	80	4(3F;1H)	20	3(1F;2H)	15		
x	4(3F;1H)	20	6(4F;2H)	30	5(5F)	25		
XX	-	-	7(6F;1H)	35	3(3F;1H)	15		
XXX	-	-	3(3H)	15	9(5F;4H)	45		
o>0.05= non-significant; n<0.05= * significant; n<0.01=** distinctly significant; n<0.001=*** year significant in comparison with A control								

p>0.05= non-significant; p<0.05= * significant; p<0.01=** distinctly significant; p<0.001=*** very significant in comparison with A control variant</p>

Table 4								
"B" VARIAN	T COMPARED TO	O "A" VARIANT						

	Botanical origin (a)				TFC content, GAE/100g (b)				
	Floral		Honeydew		< 100 mg		> 100 mg		
Statistical	Nr	%	Nr	%	Nr	%	Nr samples	%	
significance	samples	samples	samples	samples	samples	samples		samples	
ns	10	77	6	85.7	8	88.9	8	72.7	
х	3	23	1	14.3	1 (F)	11.1	3 (2F;1H)	27.3	
Total	13	100	7	100	9	100	11	100	

Results and discussions

The calibration curves for the four experimental variants has a very good linearity, \mathbb{R}^2 being over 0.99 in all cases. The reported results were obtained in different experimental sessions, each time the calibration curves were re-done in all four variants. We give one of the experimental situations as an example: \breve{A} : y = 0.0097x + 0.1109, R2 = 0.9998; B: y = 0.0102x + 0.0625, R2 = 0.9945;C: y = 0.01x + 0.0694, R2 = 0.9989; D: y = 0.0099x + 0.0099x0.0768, R2 = 0.9986. The results are presented in table 2 as mean standard deviation, minimum and maximum experimental values for every type and sample of tested honey. The codes for the tested samples are the same as presented in table 1. Looking to all experimental variants, the experimental values cover a large area as follows: nine samples (monofloral and a polyfloral one) presents TPC under 100 mg GAE/100g and eleven samples (cherry, heather, polyfloral, mixed and honeydew) between 100 and 200 mg GAE/100g. These values comply with those reported for Romanian honey [17, 19, 29] regarding sunflower, lime, acacia and honeydew. For heather much lower values (max 56,7 mg GAE/100g) were found by [20] but in Poland values in the same area as ours were reported, up to 189 mg GAE/100g [30].

Considering the A variant, the most used as control, we proceeded to compare it with the other ones applied. Mixed honey (M/Z) was included in honeydew honey category because it's TPC=185.0831mgGAE/100gindicates that honeydew is predominant. The results of statistical analysis (t-test) on the experimental values are synthesised in table 3.

As a general comment, only for two samples FLS2 and M13, there were non-significant differences between all applied variants. Regarding all tested samples, compared to the A variant, the B variant shows non-significant differences for 80% of the tested samples unlike C and D variants for which the percentage fall down to 20% and 15%, respectively. For the C variant the samples showing distinctly significant differences prevailed while for the D variant those showing very significant differences prevailed.

A detail analysis of the B variant is presented in table 4. In the limit that the number of samples is not the same, it seems that the reaction time has more influence on floral honey that in honeydew honey (*a* column of table 4). The *b* column emphasizes this opinion even for floral honey with high TPC, over 100 mg GAE/100g (Cs and PFM). The situation can be explained by the fact that honeydew honey has lower sugar content than floral honey [2, 3, 21].

Conclusions

In the terms of the present experiment, the influence of reaction conditions on TPC determination in honey leads to several conclusions.

Temperature – the rise of temperature from 20 to 40°C (A variant versus C and D) lead to significant differences between the recorded TPC values, no matter the origin of honey.

Reaction time – the reduction of time from 2 to 1 h (A variant versus B) at 20°C lead to non-significant between the recorded TPC values; the influence of botanical origin of honey in this issue is not yet evident, so further experiments are needed in order to clarify this aspect.

Temperature and time, combined – the reduction of time (C variant versus D) do not improve the correlation to the basic variant A.

Based on the present experiments results, the influence of reaction conditions on the determination of honey total phenol content by Folin- Ciocâlteu assay shows that for honey this method leads to reliable results after only one hour of reaction at room temperature. Hence reliable results can be reached in a shorter period of time. The attempt of more shortening the time combined with higher temperature affect the results.

The present experiment emphasises the requirement for the standardisation of Folin-Ciocâlteu assay in order to achieve reliable comparison of honey TPC, no matter its geographical or botanical origin.

References

1.ALVAREZ-SUAREZ, J.M., TULIPANI, S., ROMANDINI, S., VIDAL, A., BATTINO, M., Curr. Anal. Chem., *5*, 2009, p.293

2.*** COUNCIL DIRECTIVE 2001/110/EC, EN, L 10/ 2001, p. 47

3.*** SR 784-1, 2, 3/2009, MIERE DE ALBINE,

4.UTHURRY, C.A., HEVIA, D., GOMEZ CORDOVES, C., JAAS, 3(4), 2011, p. 141

5.JAGANATHAN, S.K., MANDAL, M., Indian J Nat Prod Resour, vol. 2009, 2009, p. 1

6.MAURYA, S., KUSHWAHAA.K., SINGH, S., SINGH, G., Indian J Nat Prod Resour, 5(1), 2014, p.9

7.SINGLETON, V.L., ORTHOFER, LAMUELA-RAVENTOSR.M., Methods Enzymol, 299, 1999, p. 152

8.POP, M., LUPEA, A.X., TURCUS, V., REV. CHIM., 59, Nr.5, 2008, p 491 9.PANTELIDIS, G.E., VASILAKAKIS, M., MANGANARIS, G.A., DIAMANTIDIS, G.R., Food Chem., 102 (3), 2007, p. 777

10.FILIMON, R.V., BECEANU, D., NICULAUA, M., ARION, C., Cercet.

agron. În Moldova, Vol. XLIV, No. 1 (145) / 2011, p.81 11.MOLDOVAN, L., GASPAR, A., TOMA, L., CRACIUNESCU, O., SAVIUC,

C., Rev. Chim. (Bucharest), **62**, no. 3, 2011, p 299 12.CIOROI, M., DUMITRIU, D., AUDJG- Food Technology, 34(1), 2009, p

42 13.MARSIK, N., MARSIC, K., GASPERLIN, L., ABRAM, V., BUDIC, M., VIDRIH, R., Turk J Agric For 35, 2011, p 185

14.STRATIL, P., KUBAO, V., FOJTOVA, J., Czech J. Food Sci. Vol. 26, No. 4, 2008, p 242

15.MITIC, M.N., OBRADOVIC, M.V., MITIC, S.S., PAVLOVIC, A.N., PAVLOVIC, J.LJ.,STOJANOVIC, B.T.,Rev. Chim. (Bucharest), **64**, no. 1, 2013, p 68

16.MEDA, A., LAMIEN, C.E., ROMITO, M., MILLOGO, J., NACOULMA, O.G., FoodChem., 91(3), 2005, p. 571

17.MÃRGHITAS⁴, L. AL, DEZMIREAN, D., MOISE, A., BOBIS, O., LASLO, L., BOGDANOV, S., FoodChem., 112 (4), 2008, p. 863

18.STANCIU,O.G., MARGHITAS, L.A., BOBIS, O., POPESCU, O., BONTA, O., MAGHEAR, O., DEZMIREAN, D., Bulletin UASVM Animal Science and Biotechnologies, 65(1-2), 2008, p. 249

19.DOBRE, I., GADEI, G., PATRASCU, L., ELISEI, A.M., SEGAL, R., AUDJG-Food Technology, 34(2), 2010, p. 67

20.MOISE, A., MARGHITAS, AL., DEZMIREAN, D., BOBIS, O., Nutr. Food Sci., 43(3), 2013, p. 218

21.ESCUDERO, O., MIGUEZ, M., FERNANDEZ GONZALEZ, M., SEIJO, M.C., Food Chem., 138(2-3), 2013, p. 851

22.KHALIL, I., MONIRUZZAMAN, M., BOUKRAA, L., BENHANIFIA, M., ISLAM, A., ISLAM, N., SULAIMAN, S.A, GAN, S.H., Molecules, 17 Issue 9, 2012, p 11199

23.ALZAHRANI, H., BOUKRAA, L., BELLIK, Y., ABDELLAH, F., BAKHOTMAH, B. A., KOLAYLI, S., SAHIN, H., Glob. J. Health Sci., 4(6), 2012, p. 191

24.BERETTA, G., GRANATA, P., FERRERO, M., ORIOLI, M., MAFFEI FACINO, R., Anal. Chim. Acta, 533(2), 2005, p. 185

25.BERTONCELJ, J., DOBERSEK, U., JAMNIK, M., GOLOB, T., Food Chem., 105(2), 2007, p. 822

26.SARIC, G., MARKOVIC, K., VUKICEVIC, D., LEZ, E., HRUSKAR, M., VAHCIC, N., Czech J. Food Sci, Vol. 31, No. 6, 2013, p 601

27.ÖZKOK, A., D'ARCY, B., SORKUN, K., JAAS, 2(2), 2010, p. 65

28.SANGSRICHAN S., WANSON W., KMITL Sci. J., 8, 2008, p. 1

29.BOBIS, O., MARGHITAS, L., RINDT, I. K., NICULAE, M., DEZMIREAN, D., spasb, Timisoara, 41(2), 2008, p. 271

30.WILCZYNSKA, A., Pol. J. Food Nutr. Sci., 60(4), 2010, p. 309

Manuscript received: 10.03.2016